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Abstract
Platform Multicore Processor, Complex Programmable Logic Devices (CPLDs) Application-Specific Integrated Circuit (ASIC), Graphic Pro-

cessing Unit(GPU), Vector Processor, Massively parallel processor (MPP), and Symmetric Multiprocessor (SMP)  have become key components for
dealing with parallel applications. Within parallel computing, there is a specialized parallel device called Field Programmable Array (FPGA) remain niche
areas of interest. While not domain-specific, it tends to be applicable to only a few classes of parallel problems. This research work explores the underly-
ing parallel architecture of this Field Programmable Gate Array (FPGA).  The design methodology, the design tools for implementing FPGAs is discussed
e.g. System Generator from Xilinx, Impulse C programming model etc. FPGA design in compares with other technology) is envisaged. In this research
work FPGA typically exploits parallelism because FPGA is a parallel device. With the use of simulation tool, Impulse Codeveloper (Impulse C),  FPGA
platform graphical tools that provide initial estimates of algorithm throughput such as loop latencies and pipeline effective rates are generated. Using
such tools, you can interactively change optimization options or iteratively modify and recompile C code to obtain higher performance.

Index Terms: Application-specific integrated circuit (ASIC), Complex Programmable Logic Devices (CPLDs, Field Programmable Gate Array (FPGA),
Graphic Processing Unit(GPU), Impulse Codeveloper(Impulse C), Massively parallel processor (MPP),  Multicore Processor, Symmetric Multiprocessor
(SMP), Vector Processor.

—————————— ——————————

1 INTRODUCTION
Parallel Computing allows for the dissection of large data sets
into smaller sets, each to be handled by separate processors.
This significantly increases the performance and handling of
processing intensive application. With the emergence of mul-
ticore computers, we are facing the challenge of parallelizing
performance-critical applications of all sorts. Compared to
sequential  applications,  our  repertoire  of  tools  and  methods
for cost-effectively developing reliable, parallel applications is
spotty. [5]
Within parallel computing, there is a specialized parallel de-
vice called Field Programmable Array (FPGA)  that remain
niche areas of interest. While not domain-specific, it tends to
be applicable to only a few classes of parallel problems.  The
historical roots of FPGAs are in complex programmable logic
devices (CPLDs) of the early to mid 1980s. A Xilinx co-
founder, Ross Freeman, invented the field programmable gate
array in 1985. CPLDs and FPGAs include a relatively large
number of programmable logic elements. CPLD logic gate
densities range from the equivalent of several thousand to tens
of thousands of logic gates, while FPGAs typically range from
tens of thousands to several million [11]
The primary differences between CPLDs and FPGAs are archi-
tectural. A CPLD has a somewhat restrictive structure consist-
ing of one or more programmable sum-of-products logic arrays
feeding a relatively small  number of  clocked registers.  The re-
sult of this is less flexibility, with the advantage of more pre-
dictable timing delays and a higher logic-to-interconnect ratio.

The FPGA architectures, on the other hand, are dominated by
interconnect. This makes them far more flexible (in terms of the
range of designs that are practical for implementation within
them) but also far more complex to design for. Another notable
difference between CPLDs and FPGAs is the presence in most
FPGAs of higher-level embedded functions (such as adders and
multipliers) and embedded memories, as well as to have logic
blocks implements decoders or mathematical functions. [15].
Applications of FPGAs include digital signal processing, soft-
ware-defined radio, aerospace and defense systems, ASIC pro-
totyping, medical imaging, computer vision, speech recogni-
tion, cryptography, bioinformatics, computer hardware emu-
lation and a growing range of other areas. FPGAs originally
began as competitors to CPLDs and competed in a similar
space, that of glue logic for PCBs. As their size, capabilities,
and speed increased, they began to take over larger and larger
functions to the state where some are now marketed as full
systems on chips (SOC).
FPGAs especially find applications in any area or algorithm
that can make use of the massive parallelism offered by their
architecture. One such area is code breaking, in particular
brute-force attack, of cryptographic algorithms.
The inherent parallelism of the logic resources on the FPGA
allows for considerable compute throughput even at a sub-
500 MHz clock rate. For example, the current (2007) generation
of FPGAs can implement around 100 single precision floating
point units, all of which can compute a result every single
clock cycle. The flexibility of the FPGA allows for even higher
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performance by trading off precision and range in the number
format for an increased number of parallel arithmetic units.
This has driven a new type of processing called reconfigurable
computing, where time intensive tasks are offloaded from
software to FPGAs. [15]

2.0 AIMS AND OBJECTIVE
It is known that using Multicore Processor, Application-specific
integrated circuit (ASIC), Graphic Processing Unit(GPU), Vector
Processor, Massively parallel processor (MPP), and Symmetric
Multiprocessor (SMP) more difficulties are still in existence to
solve parallel applications. Such difficulties are low massive
parallelism, inability to interactively change optimization op-
tions to obtain higher performance, inability to update the
functionality after shipping. To eradicate such difficulties, the
full architecture of “Field Programmable Logic Array” is envis-
aged.

Objectives

1. To explore challenges of parallel computations.
2. To describe the need of an effective parallel device to

eradicate such challenges
3. To describe how typical parallel application is implement-

ed on FPGA using Impulse Codeveloper from Xilinx Gen-
erator as simulator.

4. To write an algorithm for the application
5. To translate the algorithm into C++ program having a

great deal of FPGA specific hardware knowledge.
6. To compile the resulting optimized c code by the FPGA

development tools (in particular the c-to hardware com-
piler) to create a parallel hardware/software implementa-
tion.

3.0 RESEARCH METHOD
The execution of this research work is divided into phases and
the goals are achieved through phases that include:

1. Description of the complete application in C++ lan-
guage and use a standard C++ debugger to verify the
algorithm.

2.  Profiling the application to find the computational
“hot spots”.

3.  Use of data streaming, message passing and/or
shared memory to partition the algorithm into multi-
ple communicating software and hardware processes.

4.  Use of interactive optimization tools to analyze and
improve the performance of hardware-accelerated
functions.

5.  Use of C++-to-hardware compiler to generate syn-
thesizable hardware, in the form of hardware descrip-
tion language files.

4.0 CHALLENGES OF PARALLEL COMPUTA-
TIONS.

1. Low massive parallelism

2.  Inability to interactively change optimization options
to obtain higher performance, inability to update the
functionality after shipping.

3. Finding concurrency in a program - how to help pro-
grammers “think parallel”?

4. Scheduling tasks at the right granularity onto the pro-
cessors of a parallel machine.

5. The data locality problem: associating data with tasks
and doing it in a way that our target audience will be
able to use correctly.

6. Scalability support in hardware: bandwidth and la-
tencies to memory plus interconnects between pro-
cessing elements.

7. Scalability support in software: libraries, scalable al-
gorithms, and adaptive runtimes to map high level
software onto platform details.

5.0 FPGA TECHNOLOGY:
A field-programmable gate array (FPGA) is a semiconductor
device that can be configured by the customer or designer af-
ter manufacturing—hence the name "field-programmable". To
program an FPGA you specify how you want the chip to work
with a logic circuit diagram or a source code in a hardware
description language (HDL). FPGAs can be used to implement
any logical function that an application-specific integrated
circuit (ASIC) could perform, but the ability to update the
functionality after shipping offers advantages for many appli-
cations.
FPGAs contain programmable logic components called "logic
blocks", and a hierarchy of reconfigurable interconnects that
allow the blocks to be "wired together"—somewhat like a one-
chip programmable breadboard. Logic blocks can be config-
ured to perform complex combinational functions, or merely
simple logic gates like AND and XOR. In most FPGAs, the
logic blocks also include memory elements, which may be
simple flip-flops or more complete blocks of memory.
At the highest level, FPGAs are reprogrammable silicon chips.
Using prebuilt logic blocks and programmable routing re-
sources, you can configure these chips to implement custom
hardware functionality without ever having to pick up a
breadboard or soldering iron.

5.1 FPGA Architecture:
The typical basic architecture consists of an array of configu-
rable logic blocks (CLBs) and routing channels. Multiple I/O
pads may fit into the height of one row or the width of one
column in the array. Generally, all the routing channels have
the same width (number of wires).An application circuit must
be mapped into an FPGA with adequate resources.
A classic FPGA logic block consists of a 4-input lookup table
(LUT), and a flip-flop, as shown below. In recent years, manu-
facturers have started moving to 6-input LUTs in their high
performance parts, claiming increased performance.
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Typical logic block
There is only one output, which can be either the registered or
the unregistered LUT output. The logic block has four inputs
for the LUT and a clock input. Since clock signals (and often
other high-fan-out signals) are normally routed via special-
purpose dedicated routing networks in commercial FPGAs,
they and other signals are separately managed.
For this example architecture, the locations of the FPGA logic
block pins are shown be-

low.

Logic Block Pin Locations Switch box
topology
Each input is accessible from one side of the logic block, while
the output pin can connect to routing wires in both the chan-
nel to the right and the channel below the logic block.Each
logic block output pin can connect to any of the wiring seg-
ments in the channels adjacent to it.
Similarly, an I/O pad can connect to any one of the wiring
segments in the channel adjacent to it. For example, an I/O
pad at the top of the chip can connect to any of the W wires
(where W is the channel width) in the horizontal channel im-
mediately below it.
Generally, the FPGA routing is unsegmented. That is, each
wiring segment spans only one logic block before it terminates
in  a  switch  box.  By  turning  on  some  of  the  programmable
switches within a switch box, longer paths can be constructed.
For higher speed interconnect, some FPGA architectures use
longer routing lines that span multiple logic blocks.
Whenever a vertical and a horizontal channel intersect, there is
a switch box. In this architecture, when a wire enters a switch
box, there are three programmable switches that allow it to

connect to three other wires in adjacent channel segments. The
pattern, or topology, of switches used in this architecture is the
planar or domain-based switch box topology. In this switch
box  topology,  a  wire  in  track  number  one  connects  only  to
wires in track number one in adjacent channel segments, wires
in track number 2 connect only to other wires in track number
2 and so on. The figure below illustrates the connections in a
switch box.

Switch Box Topology
Modern FPGA families expand upon the above capabilities to
include higher level functionality fixed into the silicon. Having
these common functions embedded into the silicon reduces
the area required and gives those functions increased speed
compared  to  building  them  from  primitives.  Examples  of
these include multipliers, generic DSP blocks, embedded pro-
cessors, high speed IO logic and embedded memories.
FPGAs are also widely used for systems validation including
pre-silicon validation, post-silicon validation, and firmware
development. This allows chip companies to validate their
design before the chip is produced in the factory, reducing the
time to market

5.2 Benefits of FPGA Technology
1. Performance
2. Time to Market
3. Cost
4. Reliability
5. Long-Term Maintenance
6. Efficiency

1. Performance – Taking advantage of hardware parallelism,
FPGAs breaks the paradigm of sequential execution and
accomplishing more per clock cycle. BDTI, a noted analyst
and benchmarking firm, released benchmarks showing
how FPGAs can deliver many times the processing power
per dollar of a DSP solution in some applications. Control-
ling inputs and outputs (I/O) at the hardware level pro-
vides faster response times and specialized functionality
to closely match application requirements.

2. Time to market – FPGA technology offers flexibility and
rapid prototyping capabilities in the face of increased
time-to-market concerns. You can test an idea or concept
and verify it in hardware without going through the long
fabrication process of custom ASIC design. You can then
implement incremental changes and iterate on an FPGA
design within hours instead of weeks. Commercial off-
the-shelf (COTS) hardware is also available with different
types of I/O already connected to a user-programmable
FPGA chip. The growing availability of high-level soft-
ware tools decrease the learning curve with layers of ab-
straction and often include valuable IP cores (prebuilt
functions) for advanced control and signal processing.

3. Cost – The nonrecurring engineering (NRE) expense of
custom ASIC design far exceeds that of FPGA-based
hardware solutions. The large initial investment in ASICs
is  easy  to  justify  for  OEMs  shipping  thousands  of  chips
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per year, but many end users need custom hardware func-
tionality  for  the  tens  to  hundreds  of  systems  in  develop-
ment. The very nature of programmable silicon means
that there is no cost for fabrication or long lead times for
assembly. As system requirements often change over
time, the cost of making incremental changes to FPGA de-
signs are quite negligible when compared to the large ex-
pense of repining an ASIC.

4. Reliability – While software tools provide the program-
ming environment, FPGA circuitry is truly a “hard” im-
plementation of program execution. Processor-based sys-
tems  often  involve  several  layers  of  abstraction  to  help
schedule tasks and share resources among multiple pro-
cesses. The driver layer controls hardware resources and
the operating system manages memory and processor
bandwidth. For any given processor core, only one in-
struction can execute at a time, and processor-based sys-
tems are continually at risk of time-critical tasks pre-
empting one another. FPGAs, which do not use operating
systems, minimize reliability concerns with true parallel
execution and deterministic hardware dedicated to every
task.

5. Long-term maintenance – As mentioned earlier, FPGA
chips are field-upgradable and do not require the time
and expense involved with ASIC redesign. Digital com-
munication protocols, for example, have specifications
that can change over time, and ASIC-based interfaces may
cause maintenance and forward compatibility challenges.
Being  reconfigurable,  FPGA  chips  are  able  to  keep  up
with future modifications that might be necessary. As a
product or system matures, you can make functional en-
hancements without spending time redesigning hardware
or modifying the board layout.

6. Efficiency:-More computation with less power consump-
tion. FPGA offers the best ratio of  GFlops/Watt.

5.3 FPGA Design and Programming
FPGAs  can  be  programmed  with  hardware  description  lan-
guages such as VHDL or Verilog. However, programming in
these languages can be tedious. Several vendors have created
C to HDL languages that attempt to emulate the syntax
and/or semantics of the C programming language, with
which most programmers are familiar. The best known C to
HDL languages are Mitrion-C, Impulse C, DIME-C, and Han-
del-C.To  simplify  the  design  of  complex  systems  in  FPGAs,
there exist libraries of predefined complex functions and cir-
cuits that have been tested and optimized to speed up the de-
sign process. These predefined circuits are commonly called IP
cores, and are available from FPGA vendors.

5.31 Impulse Co-Developer (Impulse C)
 Impulse C is software to hardware compiler (simulator) that
generates hardware to software interfaces. It is a set of library
functions that support parallel programming for FPGAs using
the C language. Impulse C optimizes C code for parallelism
and generates HDL ready for FPGA synthesis. It moves com-

pute –intensive functions to FPGA.  The Impulse C approach
focuses on the mapping of algorithms to mixed
FPGA/processor systems. It creates highly parallel, dataflow-
oriented application. Impulse C simplifies the creation of high-
ly parallel algorithms, including mixed software/hardware
algorithms, through the use of well defined data communica-
tion, message passing, and synchronization mechanisms.

6.0 EXPERIMENTATION WITH THE SIMULATOR

The source code is divided into various blocks and each block
simulation in the hardware platform is shown. The pipeline
stages, the latency, effective rate, and number of samples gen-
erated per each cycle for each block is shown in the source
code. This will help in evaluating the acceleration and the per-
formance of each algorithm.

Graphical Representation of Synthesis of Code using the
Simulator (Impulse Codeveloper Pipeline stages

F
ig 1a. Showing the source code of pipeline2, generating la-
tency of 3, effective rate 18,   2samples/cycle and Maximum
Unit delay of 9
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Fig
1b. Showing the datapath of pipeline2  generating latency of
3, effective rate 18,   2samples/cycle and Maximum Unit de-
lay of 9

Fig 2a. Showing the source code of pipeline4  generating
latency of 14, effective rate 32,   1sample/clockcycle and Max-
imum Unit delay of 32

 Fig
2b. Showing the datapath of pipeline4 generating latency of
14, effective rate 32,   1sample/clockcycle and Maximum Unit
delay of 32

Fig 3. With simulator  (Block Stages) , Max unit Delay of 0
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Fig 4 . Showing the source code of the block stage
Without Simulator

Fig 5 The modules or classes are shown while the pipeline
rate, effective rate cannot be determined

7.0     DISCUSSION OF RESULTS
Results show the use of FPGA as a tool to improve parallel
computations  with  the  use  of  Impulse  C  tools  as  simulator.
Graphical tools ( Fig 1a,2a) above show the source code wile
(Fig 1b,2b) show the datapath and help to provide initial esti-
mates of algorithm throughput such as loop latencies and
pipeline effective rates. Using such tools, you can interactively
change optimization options or iteratively modify and recom-
pile C code to obtain higher performance. Such design itera-
tions may take only a matter of minutes when using C, where-
as the same iterations may require hours of even days when
using VHDL or Verilog.
Moreover, Impulse C-tools uses optimization techniques to
increase the performance of the code being used for an appli-
cation without having a great deal of FPGA-specific hardware
knowledge. We have also shown that pipelining introduces a
potentially high degree of parallelism in the generated logic,
allowing us to achieve the best possible throughput.

8.0  FINDINGS: PERFORMANCE EVALUATION  /
COMPARATIVE ANALYSIS

1. WITHOUT  FPGA
SIMULATOR

WITH FPGA SIMULA-
TOR

2. It does not generate
hardware program

It generates hardware pro-
gram simultaneously

3. The  number  of  ad-
ders, comparators
cannot be calculated.

The number of adders,
comparators can be calcu-
lated

4. The number of sam-
ples generated per
cycle can’t be deter-
mined.

The number of samples
generated per cycle deter-
mined.

5.
The code cannot be
easily pipelined to
speed up the pro-
cessing of filters.

It uses pragma co-unroll &
pragma co-pipeline to
pipeline  the  code  and  pro-
cessing of filters.

6.
It can easily be used
for  fixed  format  of
filters.

It  can  be  used  for  fixed  &
complex filters.

7. No   graphical  repre-
sentation of synthesis
of code.

It generates graphical rep-
resentation to show syn-
thesis of code in blocks.

8. The synthesis of code
processing flow can-
not be seen.

The synthesis of flow of
blocks & statements can be
shown

9. Does not generate
hardware description
language.

It generates hardware de-
scription language

10. Presence of low level
embedded functions

Presence of higher level
embedded functions (such
as adders & multipliers)
and embedded memories
as well as logic blocks to
implement decoders or
mathematical functions.

9.0  CONCLUSION AND FURTHER RESEARCH
In  conclusion,  this  research  has  described  FPGA as  a  tool  to
improve to parallel applications by acting as a co-processor
than conventional processors. We have shown that the under-
lying parallel architecture of FPGA helps in moving expensive
computations from the CPU and into the specifically designed
logic inside the FPGA and thus obtaining high performance at
an economical price.
FPGAs are becoming easier to use as the development tools
get  better  and  as  the  prices  on  FPGAs  falls  smaller/denser
chip manufacturing technology becomes available, thus mak-
ing them affordable to use in more computing applications.
Therefore, trends of FPGAs have now proved a better alterna-
tive to traditional processors such as ASIC for a growing
number of higher-volume applications. Further research can
focus on , hardware or software interfacing and FPGA tool
development.
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10.0 RECOMMENDATION
Based on the results and findings above we now recommend
the use of Field programmable gate array (FPGA) as the best
technology to solve parallel applications rather than using
conventional processors because it increases the computation-
al speed . FPGA technology offers these advantages; reliabil-
ity, low cost, high performance, long term maintenance, little
time to market and efficient compared to conventional proces-
sors.
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